ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Inyong Kwon, Chang Hwoi Kim (KAERI), Gyuseong Cho (KAIST)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1795-1802
This paper describes a radiation sensor network system that can remotely monitor accidental area covered by high radiation in nuclear facilities. Each radiation sensor node is designed with radiation detector, radiation hardened readout circuit, microcontroller, and wireless communication module. In this paper, we will discuss sensor and circuit design configurations as well as initial radiation test results of a commercial wireless sensor module to verify how it works with the increase of irradiation doses. The measured data will be used to design a radiation hardened wireless communication system that can provide the most important information of monitoring radiation dose in accident nuclear sites where they are leaked in unseen area to mitigate such a severe accident situation in the very early stage. According to the initial measured result, the power consumption of some wireless modules were increased around 5.5 kGy and the others were increased around 7.2 kGy depending on various control factors while a module of PER was started to decrease around 1 kGy. The tests were performed with various configurations such as distance, frequency, transmitting power, and shielding material at the gamma irradiation facility containing cobalt 60 ? ray with high level activity of 490 kCi in KAERI. The measured data would be useful for researchers not only to find weak parts of the wireless module but also come up with radiation hardening methodologies for a common digital communication system. At the conference, more analyzed and collected data will be shared to discuss which part of the wireless communication system is weak and should be radiation hardened for exploiting specific applications, for example, severe accident monitoring system and unmanned system for nuclear decommissioning.