ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
John O’Hara (BNL), Stephen Fleger (NRC)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1778-1784
Design validation is an integral aspect of the systems engineering process and safety reviews. In the nuclear industry, integrated system validation (ISV) is the primary means of validating the human factors aspects of new and modified plant designs. However, challenges posed by ISV have led to interest in alternative approaches to validation. One alternative is multi-stage validation (MSV), which involves conducting validations at multiple points throughout the design process. The objective of this research was to define MSV and to identify its potential benefits, methodology, and technical issues and challenges. To address this objective, we reviewed standards and guidelines, case studies of design validation using MSV approaches, and technical literature discussing MSV methodology. From this technical basis we developed a characterization of MSV. The general goal of validation is to provide evidence that a design or design-related activity achieves its intended purpose. MSV approaches to validation achieve this goal by linking validation activities to design stages resulting in incremental, successive validation activities beginning in the early stages of the design process and continuing through the late stages of the design process. The main elements of an MSV program are: Determining the scope of MSV, identifying stages, developing MSV methodology, integrating MSV results across validation tests, and formulating validation conclusions. MSV has many challenges and benefits when compared with ISV alone. Further development of MSV methodology will help minimize MSV’s challenges and provide designers and regulators with guidance needed to implement and review MSV programs.