ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
So Hun Yun, Young Do Koo, Man Gyun Na (Chosun Univ)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1746-1754
In the event of a severe accident in nuclear power plants (NPPs), an important issue is the hydrogen generation due to the oxidation of the fuel cladding at high temperatures inside the reactor as the coolant disappears and the core melts. During normal operation, the hydrogen concentration in containment should be kept below 4%. However, if the hydrogen concentration increases above 10% or more during a severe accident, explosive combustion reaction leading to detonation may occur and eventually it can lead to damage to the containment. Therefore, it is important to predict the hydrogen concentration in severe accidents. There have been several studies by researchers to predict the hydrogen concentration in containment by using many artificial-intelligence (AI) techniques such as fuzzy neural network (FNN) and cascaded fuzzy neural network (CFNN). This study suggests the prediction of hydrogen concentration in containment under severe accidents using a deep neural network (DNN) method. Since the severe accident data cannot be obtained from actual NPPs, we verified the proposed method based on simulation data acquired using the modular accident analysis program (MAAP) code. The DNN model shows excellent prediction performance when a variety of loss of coolant accident (LOCA) data is applied. The proposed DNN model allows operators to predict the exact hydrogen concentration in containment at the beginning of the accident. Prediction of this hydrogen concentration will help to ensure safety by reducing the risk of the hydrogen combustion and explosion in a containment.