ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
So Hun Yun, Young Do Koo, Man Gyun Na (Chosun Univ)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1746-1754
In the event of a severe accident in nuclear power plants (NPPs), an important issue is the hydrogen generation due to the oxidation of the fuel cladding at high temperatures inside the reactor as the coolant disappears and the core melts. During normal operation, the hydrogen concentration in containment should be kept below 4%. However, if the hydrogen concentration increases above 10% or more during a severe accident, explosive combustion reaction leading to detonation may occur and eventually it can lead to damage to the containment. Therefore, it is important to predict the hydrogen concentration in severe accidents. There have been several studies by researchers to predict the hydrogen concentration in containment by using many artificial-intelligence (AI) techniques such as fuzzy neural network (FNN) and cascaded fuzzy neural network (CFNN). This study suggests the prediction of hydrogen concentration in containment under severe accidents using a deep neural network (DNN) method. Since the severe accident data cannot be obtained from actual NPPs, we verified the proposed method based on simulation data acquired using the modular accident analysis program (MAAP) code. The DNN model shows excellent prediction performance when a variety of loss of coolant accident (LOCA) data is applied. The proposed DNN model allows operators to predict the exact hydrogen concentration in containment at the beginning of the accident. Prediction of this hydrogen concentration will help to ensure safety by reducing the risk of the hydrogen combustion and explosion in a containment.