ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
In Seop Jeon, Sang Hun Lee, Hyun Gook Kang (RPI)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1730-1739
Severe accidents are the unexpected events that cannot be appropriately mitigated because there are no appropriate mitigation systems or strategies. Based on lessons learned from these accidents, the establishment of all possible mitigation strategies that take into account available mitigation systems is essential. Since nuclear power plant (NPP) have become larger and more complex, systematic approach to develop mitigation procedure is needed. To handle this complexity, multilevel flow modeling (MFM) is suggested and utilized to develop proper mitigation procedures for the NPP. The MFM is a well-known qualitative modeling methodology for representing complex systems at different abstraction levels of specifications. In this study, time-related information is additionally considered to reflect dynamic features to the conventional MFM model. If the time-related information is added to the MFM model, more diverse and quantitative mitigation procedures can be established. For example, in case of the water supply system with the backup tank that is described in this paper, one mitigation procedure that is the use of backup tank can be developed with the conventional MFM method. If time-to-propagate concept is applied, we can develop mitigation strategy as follow: (1) use water in the tank 1 for 3128s then use water in the tank 2 for additional 3303s then use water in the backup tank, (2) use water in the tank 2 for 2757s then use water in the backup tank. These various accident mitigation options help to mitigate accident effectively.