ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Konor Frick, Alexander Duenas, Piyush Sabharwall, JunSoo Yoo, Su-Jong Yoon, Carl Stoots, James E. O’Brien, Thomas O’Brien (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1720-1729
Nuclear Renewable Hybrid Energy Systems (NR-HES) is an area of current research interest as wind and solar grid penetrations continue to increase. The goal of these systems is to enable nuclear plant operation at ~100% capacity and store excess energy, when available, for later use. Sensible heat Thermal Energy Storage (TES) systems have been shown to be an effective thermal load management strategy allowing nuclear reactor systems to operate at effectively 100% full power while storing excess thermal energy for recovery at a later time. Thermal storage has been modeled extensively around the world. However, little in the way of experimentation is being conducted. Experimentation is needed to verify the dynamics and control of TES systems. To complement the modeling and simulation efforts on nuclear-renewable hybrid energy systems, Idaho National Laboratory (INL) is designing a Thermal Energy Delivery System (TEDS). The system will provide a means of distributing thermal energy to and from various co-located systems located in the INL Dynamic Energy Transport and Integration Laboratory (DETAIL). DETAIL will include a high-pressure high-temperature water flow loop simulating a Pressurized Water Reactor (PWR), a 25 kWe High-Temperature Steam Electrolysis (HTSE) unit (first potential heat user/customer) and a packed-bed Thermal Energy Storage (TES) system. The thermal energy transfer from TEDS can be used in a flexible, dynamic manner incorporating charging and discharging cycles from the TES system, to support test/demonstration operations for nuclear-renewable hybrid energy systems (N-R HES) applications. This paper discusses the design, operation, instrumentation (sensors), and control strategies to enable the dynamic operation of TEDS.