ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Konor Frick, Alexander Duenas, Piyush Sabharwall, JunSoo Yoo, Su-Jong Yoon, Carl Stoots, James E. O’Brien, Thomas O’Brien (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1720-1729
Nuclear Renewable Hybrid Energy Systems (NR-HES) is an area of current research interest as wind and solar grid penetrations continue to increase. The goal of these systems is to enable nuclear plant operation at ~100% capacity and store excess energy, when available, for later use. Sensible heat Thermal Energy Storage (TES) systems have been shown to be an effective thermal load management strategy allowing nuclear reactor systems to operate at effectively 100% full power while storing excess thermal energy for recovery at a later time. Thermal storage has been modeled extensively around the world. However, little in the way of experimentation is being conducted. Experimentation is needed to verify the dynamics and control of TES systems. To complement the modeling and simulation efforts on nuclear-renewable hybrid energy systems, Idaho National Laboratory (INL) is designing a Thermal Energy Delivery System (TEDS). The system will provide a means of distributing thermal energy to and from various co-located systems located in the INL Dynamic Energy Transport and Integration Laboratory (DETAIL). DETAIL will include a high-pressure high-temperature water flow loop simulating a Pressurized Water Reactor (PWR), a 25 kWe High-Temperature Steam Electrolysis (HTSE) unit (first potential heat user/customer) and a packed-bed Thermal Energy Storage (TES) system. The thermal energy transfer from TEDS can be used in a flexible, dynamic manner incorporating charging and discharging cycles from the TES system, to support test/demonstration operations for nuclear-renewable hybrid energy systems (N-R HES) applications. This paper discusses the design, operation, instrumentation (sensors), and control strategies to enable the dynamic operation of TEDS.