ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Sarah Davis (Univ of Tennessee, Knoxville), Robert C. Duckworth, Michelle K. Kidder, Tolga Aytug (ORNL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1707-1719
Nuclear power plants (NPPs) are operating beyond their original 40-year operating lifetime, with more than 80% operating on the first license renewal for an extended 20-years. To sustain the effective and cost-effective operation of their electrical cables, understanding cable material performance in current and future environments can lead to effective maintenance strategies and condition monitoring protocols. Addressing the issue of long-term operation and viability, accelerated aging was carried out on chlorosulfonated polyethylene (CSPE) / ethylene propylene rubber (EPR) insulations that were removed from harvested electrical cables. Cables were obtained as part of the Light Water Reactor and Sustainability (LWRS) Zion Harvesting Project in cooperation with Energy Solutions and the U.S. NRC. Zion NPP was in operation for 25 years prior to decommissioning before its 40-year operation license had expired. For the Boston Insulated Wire (BIW) manufactured EPR insulation with outer CSPE jackets, degradation was observed in mechanical properties with respect to time and temperature was observed. This degradation was impacted by the outer CSPE jacket as the increase in to the time to degradation at the same temperature was observed for EPR insulations with the outer CSPE jacket removed prior to aging. The correlation of IM and density to EAB also suggested that these parameters could also be used effectively in the estimates of activation energy with additional data. Arrhenius analysis on the mechanical degradation as measured by EAB for the two types of BIW EPR insulations with outer CSPE jackets estimated activation energies slightly different (BIW-A without outer CSPE jacket 1.58 eV, BIW-B with outer CSPE jacket 1.10 eV) than the 1.24 eV found in from analysis of EAB data found in Zion NPP BIW insulation documentation. These values were higher than those previously reported of 0.90 eV to 0.96 eV for CSPE and EPR materials in the literature and additional measurements are needed to further validate the increase in activation energy for these harvested materials and possible impact on remaining useful life estimation. Finally, FTIR analysis showed differences in the oxidation as measured by decrease in C-H bonds in EPR insulation and CSPE jackets and increase in C-O bonds in certain cases.