ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Gaëtan Robin, Anne-Sophie Hintzy, Stéphane Marchaud, Rachid Hamadi (EdF)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1591-1599
For some years now, studies have proved the feasibility and the interest of providing simulation solutions on the functional and detailed I&C specifications of nuclear units. This is a first step to detect design errors upstream of I&C engineering process. Indeed, the rupture in the design process between detailed specifications and final programmed or wired I&C systems (different tools and different people/staffs are involved for these activities) increases the risk of errors detected late, during on-site requalification tests. Generally, platform tests are performed to verify the final implementation of I&C, but they are often limited to logical functions and performed in open-loop. For several years, EDF Research and Development has been working jointly with EDF engineering units to add I&C closed-loop verifications in design process, especially by studying Model-In-the-Loop (MIL) and Hardware-In-the-Loop (HIL) simulations. In HIL simulation, an I&C platform is connected to a numeric model that simulates the plant dynamic behavior. The advantage to connect control system to a process model is that exchanged data, namely process and I&C data are more realistic and have a functional meaning. It presents a real interest to have physical feedbacks (for example water level or pressure in a circuit) for the verification of analog controls. Furthermore, the use of real programmed I&C systems allow to perform more realistic tests by taking into account the hardware characteristics of the platform (filtering time, delays, etc.). This approach ultimately increases confidence level in engineering studies before on-site tests and earn time and money by detecting problems during platform tests. The paper details the approach adopted by EDF R & D for the implementation of HIL simulation (in terms of tools, testing platforms), and will present its application on a concrete case study of an analog regulation modification, on 1300MW French Nuclear Power Plants.