ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Arnaud Duthou, Aurélien Mattei, Alain Boue (Rolls-Royce Civil Nuclear)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1568-1580
The ability of microprocessor-based I&C safety platforms to process a large amount of complex parameters as well as the difficulty to maintain older analog equipment led to the gradual replacement of the hardwired technologies installed long ago. However, their complexity and cost, combined with new safety requirements, has generated a renewed interest for the Hardwired technologies that are usually simpler and cheaper to qualify. As Hardwired systems still have limited data processing, they usually cannot be used efficiently for the complete protection system of complex reactors or architectures. They however are ideal for other functions such as diverse actuation systems, priority logic, post-accident systems or even main protection systems for simple architectures such as research reactors’. Nevertheless, most existing “non-programmed” technologies have not evolved much since their creation several decades ago and therefore suffer from obsolescence issues and capability limitations. Thus the creation of a truly modern, performant and purely hardwired technology (i.e. not based on FPGA) represents a progress in the catalogue of next generation technologies available for 1E/Cat A. safety I&C. The development of a modern I&C platform is always a challenge as the requirements are continuously evolving toward more stringent standards, especially for safety classified I&C systems. In order to meet all these requirements, the platform shall provide state of the art electronic features and its design criteria shall include flexibility, scalability and space optimization as well as integrated communication. Consequently, the creation of a next generation safety I&C platform based on purely hardwired technology represents a significant challenge and this paper will present the method used by Rolls-Royce to achieve a successful result for its new Hardline platform.