ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
James A. Smith, Vivek Agarwal (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1311-1318
Two challenges to increase the efficiency in nuclear energy production are the ability to enhance the fundamental understanding of reactor operation and developing improved approaches for diagnostic and prognostic techniques. Traditionally, radiation-hardened sensors and their associated signal-conditioning electronics are used to study key process parameters inside the nuclear reactor core. However, traditional approaches have limitations such as the requirement of at least two wires to provide power, communicating information from inside to outside the nuclear reactor vessel, and the degradation of the performance of sensors along with their instrumentation/electronics over time. These limitations can have an adverse effect on measurement accuracy and model predictions. Conventional process sensors generally monitor quasi-static variations and tend to filter dynamic events that may be critical to diagnosing issues. A new approach to process monitoring is being developed to address some of the shortcomings of traditional process monitoring techniques in nuclear reactors. This paper describes a methodology that uses intrinsic reactor processes, an Acoustic Measurement Infrastructure and a novel data processing method to determine abnormal reactor operation. The resulting data from the Advanced Test Reactor is used to identify reactor state changes which will enable diagnostic and prognostic capabilities. The use of intrinsic reactor processes and the acoustic transmission of signals for process monitoring address the limitations of traditional process sensing.