ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Chad J. Kiger (AMS)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1294-1303
Traditional wireless technologies are typically difficult and costly to implement in industrial environments such as nuclear power plants. Because the current implementation methodology is specific to individual wireless protocols such as LTE, Wi-Fi, WirelessHART, and ISA100, each family of wireless devices requires its own antennas, data collection nodes, and supporting infrastructure to move data from the field to a centralized monitoring point in the plant. Furthermore, keeping the system up-to-date often requires expensive overhauls to the electronics to keep up with rapidly changing wireless technologies. Due to increased plant demand for data intensive applications such as equipment condition monitoring, voice and video communication, and access to electronic work packages, nuclear power plants need the ability to upgrade their wireless backbone to handle increased data throughput while protecting against evolving cyber security threats. Distributed Antenna System (DAS) technology has the potential to address the obsolescence and infrastructure issues associated with traditional wireless implementations. A DAS uses a radiating cable and/or collection of antennas to provide wireless coverage to a large area including within and through metallic, concreate, and other objects. A research and development (R&D) project is being conducted to identify and resolve the challenges associated with the use of DAS technology in a nuclear power plant. These challenges include identifying the optimal system components and installation practices that should be used when implementing a DAS in a nuclear power plant to maximize performance, minimize EMI/RFI concerns, and address cyber security and other installation considerations. Furthermore, the R&D project is addressing the lack of wireless condition monitoring sensors capable of communicating over a DAS that meet the needs of the nuclear industry.