ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
C. Sexton, T. Toll, B. McConkey, G, Harmon (AMS)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1232-1241
Electrical cables provide essential functions such as delivery of power or instrumentation signals for most industrial monitoring systems. Most cables installed in plants use organic polymer insulation materials that can become brittle, crack, or degrade over time from exposure to harsh environmental conditions such as elevated temperature, moisture, vibration, mechanical shock and radiation. The focus of this paper describes an overall strategy for condition monitoring (CM) of electrical cables using both in-situ and laboratory assessment techniques. This cable CM strategy includes several steps to assess the health and manage the aging of the cables during the operating life of an industrial facility. These steps include performing As-Found evaluations to determine the current condition of installed cables. After the completion of the initial assessments, in-situ cable evaluations and testing are conducted to identify potential issues in the circuits including degraded terminations, splices and/or connections as well as identify degraded sections of cable insulation. This testing is accomplished with non-destructive evaluation (NDE) CM techniques that can be applied in-situ without adversely affecting the cable circuit or the end device. The As-Found and in-situ evaluations provide information about the current condition of the cable circuits as well as data used for trending age related degradation and estimating the remaining useful life (RUL) of the cables with regard to the environmental conditions they are exposed to during normal operation.