ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Tyler Naughton (Univ of Tennessee, Knoxville), Christian Petrie (ORNL), Jamie Coble (Univ of Tennessee, Knoxville)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1143-1149
Advanced fuel compositions, such as accident tolerate fuels (ATF), are an active area of developing in the nuclear power industry. The long-term performance of these newly developed fuels is estimated through physics-based simulation models of irradiation-, temperature-, pressure-, etc.-induced material degradation. As these fuels are deployed in test reactors, measurement and characterization of the fuel pin evolution is used to validate prediction models. In-pile material evolution parameters, such as fuel rod pressurization, fuel stack and cladding elongation, and cladding diameter, are commonly measured using a linear voltage differential transformer (LVDT). However, LVDTs are bulky and limited to lower (350- 500C) temperature operation. The high power density and small size of most experimental positions in high performance research reactors used for accelerated materials irradiation studies generally precludes the use of LVDTs in these reactors. There is a critical need for sensors that provide real-time data regarding material evolution under highly accelerated irradiation. These sensors would ideally have a small profile and the ability to withstand irradiation at extremely high dose rates and temperatures for extended periods of time. A capacitance-based sensor is currently under development at the University of Tennessee to provide a direct measurement of in-pile dimensional change during irradiation. Sensor response was simulated using AutoCAD Electromagnetic field simulator (EMS) for a variety of sensor materials and configurations and fuel pin swelling conditions. Initial results of these simulations are summarized and areas of ongoing research and development are discussed.