ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
B. Badamchi, N. Kandadai, A. A. Simon, M. Mitkova, H. Subbaraman (Boise State Univ)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1037-1042
Materials inside nuclear reactors are exposed to extreme conditions, which include high temperature, high radiation doses, and corrosive conditions. Precise monitoring of a reactor environment is critical for its stability and proper functionality over the operational lifetime. To observe material performance (microstructure, chemistry, mechanical and other property changes with the changing conditions) while exposed to the reactor environment, real time monitoring of environmental conditions is required. This paper showcases the design of a novel, highly accurate, small size, reusable, real-time and reversible high temperature sensor for use within a nuclear reactor. The design is based on a hybrid plasmonic waveguide (HPW) structure comprising of chalcogenide glass (ChG) cladding on high index silicon optical waveguides. The transmitted power through the HPW structure in the transverse electric (TE) and transverse magnetic (TM) modes are simulated for both the amorphous and the crystalline states of the ChG phase change material. Our devices demonstrate a high extinction ratio of 120.4dB within a short length of 5 ?m of the waveguide, indicating the compactness of our designs. Moreover, monitoring the output power from an array of HPWs, wherein each silicon waveguide is coated with a different composition of ChG glass, provides a convenient way to monitor the temperature increase inside a nuclear reactor as a function of time.