ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
“Summer time” again? Santee Cooper thinks so
South Carolina public utility Santee Cooper and its partner South Carolina Electric & Gas (SCE&G) called a halt to the Summer-2 and -3 AP1000 construction project in July 2017, citing costly delays and the bankruptcy of Westinghouse. The well-chronicled legal fallout included indictments and settlements, and ultimately left Santee Cooper with the ownership of nonnuclear assets at the construction site in Jenkinsville, S.C.
B. Badamchi, N. Kandadai, A. A. Simon, M. Mitkova, H. Subbaraman (Boise State Univ)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1037-1042
Materials inside nuclear reactors are exposed to extreme conditions, which include high temperature, high radiation doses, and corrosive conditions. Precise monitoring of a reactor environment is critical for its stability and proper functionality over the operational lifetime. To observe material performance (microstructure, chemistry, mechanical and other property changes with the changing conditions) while exposed to the reactor environment, real time monitoring of environmental conditions is required. This paper showcases the design of a novel, highly accurate, small size, reusable, real-time and reversible high temperature sensor for use within a nuclear reactor. The design is based on a hybrid plasmonic waveguide (HPW) structure comprising of chalcogenide glass (ChG) cladding on high index silicon optical waveguides. The transmitted power through the HPW structure in the transverse electric (TE) and transverse magnetic (TM) modes are simulated for both the amorphous and the crystalline states of the ChG phase change material. Our devices demonstrate a high extinction ratio of 120.4dB within a short length of 5 ?m of the waveguide, indicating the compactness of our designs. Moreover, monitoring the output power from an array of HPWs, wherein each silicon waveguide is coated with a different composition of ChG glass, provides a convenient way to monitor the temperature increase inside a nuclear reactor as a function of time.