ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kevin Agarwal, Marat Khafizov (Ohio State), Robert Schley, Colby Jensen, David Hurley (INL), Nirmala Kandadai, Harish Subbaraman (Boise State Univ)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1028-1036
The objective of this paper is to present preliminary thermal and imaging analysis of infrared thermography applied for crack detection in nuclear fuel. Cracking of nuclear fuel has notable implications on the fuel performance. Cracks provide a pathway for faster fission gas release and buildup of pressure inside the fuel rod. Crack induced relocation of fuel results in pellet cladding mechanical interaction. Lastly the fragmentation of the fuel under severe thermal stress leads to loss of fuel ability to maintain coolable geometry. The aforementioned phenomena impact the life time of the fuel. In-pile detection of the solid material cracking will allow for better understanding of the fuel’s thermo-mechanical behavior and allow validation and development of fuel performance codes. In this report, we summarize the result of the modeling efforts to identify an optimal configuration for infrared thermography for detecting structural evolution of the fuel such cracking. Similar approaches can be further expanded and consider fuel void formation, relocation and pellet claddinh interaction. In this modeling effort, various heater configurations including source and geometry as well as ambient temperature conditions were considered. For sources of heating: internal heat generation by fission or gamma rays and external surface heating by a laser were considered. For the external heater geometry, the condition of uniform and point source surface heater were analyzed. A free space setup implementing IR camera with lock-in detection capability has been identified as a first step for achieving in-pile implementation. The ability to detect cracks in-pile will open up possibilities for further advancements in fuel performance.