ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. J. Palmer, R. S. Skifton, D. C. Haggard, W. D. Swank (INL), M. Scervini (Univ of Cambridge)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1013-1027
High-temperature gas reactor experiments create unique challenges for thermocouple-based temperature measurements. High-temperature industrial thermocouples suffer rapid decalibration due to transmutation of the thermoelements from neutron absorption. For lower temperature applications, Type K and Type N thermocouples are affected by neutron irradiation only to a limited extent. But until recently, the use of these nickel-based thermocouples was limited when the temperature exceeds 1050°C due to drift related to phenomena other than nuclear irradiation. Certain portions of the final Advanced Gas Reactor test (AGR-5/6/7) will experience temperatures higher than any of the previous AGR tests, up to 1450°C. Recognizing the limitations of existing thermometry to measure such high temperatures, the sponsor of the AGR-5/6/7 test supported a development and testing program for thermocouples capable of low-drift operation at temperatures above 1100°C. This program included additional development of high-temperature irradiation-resistant thermocouples (HTIR-TCs) based on molybdenum/niobium thermoelements, which have been studied at INL since circa 2004. A step change in accuracy and long-term stability of this thermocouple type has been achieved as part of the AGR-5/6/7 thermometry development program. Additionally, long term testing (7000+ hrs) at 1250°C of Type N thermocouples utilizing a customized sheath developed at the University of Cambridge has been completed with excellent low-drift results. The results of this testing as well as testing of the improved HTIR design are reported herein. Both the improved HTIR and the Cambridge Type N thermocouple types have been incorporated into the AGR-5/6/7 test, which began irradiation February 2018.