ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jorge V. Carvajal, Shawn C. Stafford, Jeffrey L. Arndt, Paul M. Sirianni, Melissa M. Heagy, Emre Tatli (Westinghouse), David M. Carpenter, Yakov Ostrovsky (MIT)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 1000-1012
The development and commercial introduction of advanced nuclear reactor fuel is slowed by the long turnaround time required by the methodology’s cycle of in-core irradiation, cooling, shipping and post irradiation examination (PIE). PIE is complicated and costly due to the high activation of the irradiated fuel. During the development process, which can extend over several years, access to fuel cladding operating data is very limited. Incorporating a real-time, remote, fuel monitoring system into the fuel rod can provide critical information on such parameters as centerline fuel temperature, axial fuel pellet elongation and rod internal pressure that can enable fuel models to be adjusted in real time and accelerate the licensing approval process. By transmitting the information from the integral sensor through the cladding, penetrations into the fuel rod are avoided and the performance of the fuel is not compromised. Data on fuel performance is generated immediately on startup of the instrumented fuel rod and can continue throughout the life of the rod. This data can be used immediately to inform further fuel development activities and can also be used to target PIE activities to enhance their usefulness and reduce costs. This paper will describe the prototype sensor development, operation and results obtained during the irradiation program at the Massachusetts Institute of Technology Reactor (MITR).