ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Sarah Miele, Pranav Karve, Sankaran Mahadevan (Vanderbilt Univ), Vivek Agarwal (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 976-982
In this work, we investigate the suitability of a novel dynamics-based method, namely vibroacoustic modulation (VAM), for the detection and localization of cracks caused by the alkali-silica reaction (ASR). ASR is a chemical reaction between the cement and certain aggregates containing amorphous silica. In a VAM test, the structural component is excited using two frequencies. The frequency modulation (and hence the nonlinear structural behavior) appears as sidebands around the higher (probing) frequency in the linear spectrum (LS) of the measured response in the neighborhood of the damage zone. A map of the magnitude of such sidebands can be used to detect and localize the damage [1]. We perform laboratory experiments to investigate VAM-based damage diagnosis in thick concrete components. We describe laboratory testing on a cement slab containing four pockets of reactive aggregates placed at known locations. Our experiments show that VAMbased testing with optimized test parameters and suitable sensor density can potentially be used to detect and localize cracks in thick concrete structures.