ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jacob A. Farber, Daniel G. Cole (Univ of Pittsburgh)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 868-878
In the nuclear power industry, one important class of accidents is the loss of coolant accident (LOCA). This paper presents methods to detect a LOCA that is initiated: (i) while the plant is going through a small transient, and (ii) with a time-varying leak magnitude. The accident is simulated using a generic pressurized water reactor (GPWR) simulator. The fault is detected using a model-based approach with models identi ed using GPWR data. The model-based approach is multiple-model adaptive estimation (MMAE), which uses multiple system models representing both normal and faulted operating conditions. During operation, these models simulate the potential operating conditions, incorporating measurement feedback in a Kalman lter state-estimation structure. Faults are detected by selecting the model that most closely matches the system according to statistical characteristics. For a LOCA, data-driven models of the pressurizer liquid level are derived using rst-principles and system identi cation. In system identi cation, a physics-based model form is derived that contains unknown parameters. System identi cation is then used to estimate the parameter values based on measurement data, providing plant-speci c pressurizer models. For the accident scenario described above, the proposed methods di erentiate between the transient and the accident, and provide real-time estimates of the leak magnitude after it has been initiated.