ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Jacob A. Farber, Daniel G. Cole (Univ of Pittsburgh)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 868-878
In the nuclear power industry, one important class of accidents is the loss of coolant accident (LOCA). This paper presents methods to detect a LOCA that is initiated: (i) while the plant is going through a small transient, and (ii) with a time-varying leak magnitude. The accident is simulated using a generic pressurized water reactor (GPWR) simulator. The fault is detected using a model-based approach with models identi ed using GPWR data. The model-based approach is multiple-model adaptive estimation (MMAE), which uses multiple system models representing both normal and faulted operating conditions. During operation, these models simulate the potential operating conditions, incorporating measurement feedback in a Kalman lter state-estimation structure. Faults are detected by selecting the model that most closely matches the system according to statistical characteristics. For a LOCA, data-driven models of the pressurizer liquid level are derived using rst-principles and system identi cation. In system identi cation, a physics-based model form is derived that contains unknown parameters. System identi cation is then used to estimate the parameter values based on measurement data, providing plant-speci c pressurizer models. For the accident scenario described above, the proposed methods di erentiate between the transient and the accident, and provide real-time estimates of the leak magnitude after it has been initiated.