ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Sang Hun Lee, Hyun Gook Kang (RPI), Seung Jun Lee (UNIST), Sung Min Shin (KAERI), Eunchan Lee (Korea Hydro & Nuclear Power Co., Ltd.)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 803-812
An issue on incorporating the software reliability within the NPP PRA model has been emerged in the licensing processes of digitalized NPPs. Since software failure induces CCFs of the processor modules, the reliability of the software used in NPP safety-critical I&C systems must be quantified and verified with proper test cases and environment. In order to prove the software to be error-free or have very low failure probability, an exhaustive testing of software is required. In this study, a software testing method based on the MCS-based exhaustive test case generation scheme combined with the simulation-based test-bed is proposed. The software test-bed was developed by emulating the microprocessor architecture of PLC used in NPP safety-critical applications and capturing its behavior at each machine instruction. For the test case generation, the software logic model was developed from the formal definition of FBD/LD and the sets of MCSs which represent the necessary and sufficient conditions for the software variables’ states to produce safety software output were generated. The MCSs were then converted into the test sets which are used as inputs to test-bed to verify that the test cases produce correct output after software execution. The effectiveness of the proposed method is demonstrated with the safety-critical trip logic software of IDiPS-RPS, a fully digitalized reactor protection system. The method provides a systematic way to conduct software exhaustive testing while effectively reducing the software testing effort by emulating PLC behavior in machine-level compared to existing software testing methods.