ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sang Hun Lee, Hyun Gook Kang (RPI), Seung Jun Lee (UNIST), Sung Min Shin (KAERI), Eunchan Lee (Korea Hydro & Nuclear Power Co., Ltd.)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 803-812
An issue on incorporating the software reliability within the NPP PRA model has been emerged in the licensing processes of digitalized NPPs. Since software failure induces CCFs of the processor modules, the reliability of the software used in NPP safety-critical I&C systems must be quantified and verified with proper test cases and environment. In order to prove the software to be error-free or have very low failure probability, an exhaustive testing of software is required. In this study, a software testing method based on the MCS-based exhaustive test case generation scheme combined with the simulation-based test-bed is proposed. The software test-bed was developed by emulating the microprocessor architecture of PLC used in NPP safety-critical applications and capturing its behavior at each machine instruction. For the test case generation, the software logic model was developed from the formal definition of FBD/LD and the sets of MCSs which represent the necessary and sufficient conditions for the software variables’ states to produce safety software output were generated. The MCSs were then converted into the test sets which are used as inputs to test-bed to verify that the test cases produce correct output after software execution. The effectiveness of the proposed method is demonstrated with the safety-critical trip logic software of IDiPS-RPS, a fully digitalized reactor protection system. The method provides a systematic way to conduct software exhaustive testing while effectively reducing the software testing effort by emulating PLC behavior in machine-level compared to existing software testing methods.