ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Elia Shteimberg (Nuclear Research Center), Da?istan ?ahin (NIST)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 747-756
National Bureau of Standards Reactor (NBSR) uses a refueling cannon system in-between 38-day reactor operation cycles. The refueling canon system is an electro-mechanical system to transfer fuel elements between the reactor vessel and the storage pool. The system was in service since the initial construction of the reactor, during which time few upgrades had been made. Since the last upgrade, the system operating interface was an electrical panel that consisted of pushbuttons and lights that demanded frequent care and maintenance. The instrumentation was controlled by an analog relay logic circuitry, superseded by Programmable Logic Controller (PLC), which was only capable of basic instructions, preventing implementation of any complex control logic. The manufacturer support for this PLC modules and hardware had been diminished for many years. PLC configuration and programming software required an outdated DOS PC platform and communication hardware, that made it infeasible to configure the PLC using modern computer system interfaces and utilize the configuration software to make changes as required. These issues, along with new operational and safety requirements and the need for a modern, high performance user interface led to a decision to upgrade the Refueling Canon control system with a modern PLC and PC based Human Machine Interface (HMI). The new control system was designed using Industry standard, modern PLC hardware for easy maintenance. PLC software application was implemented as a well commented, readable and modular program code that uses function blocks for repeating code to simplify the maintenance and future changes. Control logic and operating conditions from the existing controller were reverse engineered and implemented precisely in the new program logic. The upgrade produced four main benefits. First, a computer HMI interface was designed and developed in accordance to current industry standards. Second, the HMI was designed to include all the operator procedures, with automatic guidance and error preventing features. Third, engineering safety features were introduced, that define safe equipment operation in case of power failure or PLC power cycling and for the shutdown state of the system. Finally, the old control cabinet experienced numerous changes over the years, resulting in tangled, hard-to-trace, unlabeled wiring, leading to difficult maintenance and troubleshooting. Thus, the upgrade included a total redesign and rewiring of the control cabinet electrical circuitry. In this paper, we discuss our experience in reverse engineering an aging system and the design, verification and validation, testing and installation of the replacement system.