ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Emil Wingstedt (IFE), Olli Saarela (VTT Technical Research Centre of Finland)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 721-732
Data reconciliation is a commonly used technique for correcting random errors in measurement data in the process industry. The technique uses models describing the mutual relationships of process variables related to available measurements. These models are based on knowledge of process physics. Measurement readings are adjusted so that especially mass and energy balances described by the model match. The technique has proven effective in reducing measurement uncertainties. The paper presents a Monte Carlo study of error propagation in data reconciliation of the turbine section of a VVER 440 nuclear power plant. Uncertainties in model parameters describing turbine dry efficiencies and the quality of steam exiting the steam generators are considered in addition to measurement noise. The impact of these factors on estimated reactor thermal power is evaluated, both individually and as joint impacts. For both the measurement signals and the plant parameters, the resulting effect on the uncertainty of thermal power is lower than the 2% uncertainty for reasonable levels of added noise. These results support the use of data reconciliation for reducing the uncertainty in thermal power.