ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. T. Young, W. Aylward, P. Murray, G. M. West, S, D. J. McArthur (Univ of Strathclyde)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 711-720
Of the seven Advanced Gas-cooled Reactor nuclear power stations in the UK, the majority are approaching their planned closure date. As the graphite core of these type of reactors cannot be repaired or replaced, this is one of the main life-limiting factors. The refuelling of a nuclear power station is an ongoing process and refuelling of the reactor occurs typically every 6 to 8 weeks. During this process, data relating to the weight of the fuel assembly is recorded: this data is called fuel grab load trace data and the major contributing factor to this are the frictional forces, with a magnitude related to the channel bore diameter. Through an understanding of this data, it is possible to manually interpret whether there are any defects in the individual brick layers that make up the graphite core but doing so requires significant expertise, experience and understanding. In this paper, we present a knowledge-based system to automatically detect defects in individual brick layers in the fuel grab load trace data. This is accomplished using a set of rules defined by specialist engineers. Secondly, by splitting up the trace into overlapping regions, the use of multiple deep autoencoders is explored to produce a generative model for a normal response. Using this model, it is possible to detect responses that do not generalise and identify anomalies such as defects in the individual brick layers. Finally, the two approaches are compared, and conclusions are drawn about the applications of these techniques into industry.