ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kevin Tsai, Austin Fleming, Colby Jensen, Ryan Fronk, Troy Unruh, Eric Larsen, Cody Race (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 612-617
Fast-response Self-Powered Neutron Detectors (SPNDs) demonstrated good performance in providing live-time, in-pile neutron flux measurements during transient operations at the Transient Reactor Test (TREAT) Facility at Idaho National Laboratory (INL) in the early 1990s. Two types of emitters for the fast-response SPNDs were tested?hafnium and gadolinium. Both types of SPNDs emitters generate electrical current which can be correlated to neutron flux. Gamma rays emitted from (n, ?) reactions in the emitter eject electrons by Compton scattering, which in turn induces the signal current. Current is also induced within the signal wire, thereby, necessitating a second compensation wire. The currents are subsequently measured using a pair of electrometers to provide time-resolved localized neutron flux measurement. These transient-response SPNDs have been reinserted into TREAT in 2018 to measure neutron flux levels and in-core power response during rapid reactivity insertion transients to support the recent TREAT resumption of operations. The objective of these experiments is to establish the instrumentation capability provided by fast-response SPNDs at INL to support transient irradiations. Testing of the SPNDs included the use of a gadolinium and a hafnium SPND in temperature limited and clipped reactivity insertion transients. The full-width half-maximum (FWHM) of the transient response measured from the SPNDs was compared with the TREAT ex-core neutron detectors as an initial step of analyzing the performance of the SPNDs and accompanying electronics. These SPNDs will be used as a benchmark for the development and fabrication of future SPNDs for deployment in transient irradiation tests.