ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Kurt Davis, Richard Skifton Josh Daw, Troy Unruh, Ashley Lambson, Pattrick Calderoni (INL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 602-611
The use of X-ray inspection has evolved into an integral process to aid in the design and testing of in-pile instrumentation. Two types of X-ray inspection, three dimensional computed tomography (3D CT) and radioscopy, have been employed at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL). Early in the development of the high temperature irradiation resistant thermocouple (HTIR TC), radioscopy, which produces a two dimensional X-ray image or digital radiograph, was key in development of the HTIR TC. Radiographs were originally produced using an image intensifier linked to a CCD camera. Later upgrades to the radioscopy process replaced the image intensifier and CCD camera with a flat panel detector. With the increased dynamic range of the flat panel detector, additional discoveries were made about the performance of the HTIR TC. Three dimensional computed tomography is a recent tool added to the arsenal of nondestructive evaluations performed at the HTTL. This capability has enabled the development of new in-pile instrumentation to a level that would not have been achievable without this X-ray inspection process. Examples include the diamond temperature sensor, the transient hot wire thermal conductivity probe, the ultrasonic thermometer and the micro pocket fission detector. This paper will discuss the evolution X-ray inspections at the HTTL and their contribution to the development of in-pile instrumentation.