ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Kelly M. McCary, Brandon A. Wilson, Anthony H. Birri, Christian Petrie (ORNL), Thomas E. Blue (Ohio State)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 469-477
Optical fibers provide a variety of options for instrumentation in reactor environments. Optical fibers can be used to measure multiple physical phenomena including, temperature, strain, pressure, and fluid level. In addition to the various sensing applications, optical fibers are immune to electromagnetic interference, have a small footprint (~100 ?m), and a fast response. The Department of Energy and Idaho National Laboratory have considered optical fibers for use as in-pile instrumentation in the Transient Reactor Test Facility (TREAT). TREAT was designed to test reactor fuels under accident conditions by replicating accident conditions for a variety of reactor transients, such as those associated with a loss of coolant accident (LOCA). This work investigates silica fiber optic temperature sensors with inscribed type-II fiber Bragg gratings (FBGs) under conditions similar to those that would be experienced in a TREAT transient. Separate effects testing was used to test the sensors under high-temperature step transients and under irradiation up to a total fluence similar to that of TREAT. Specifically, this work investigates distributed temperature measurements, using the Optical Frequency Domain Reflectometry (OFDR) sensing technique, using a Luna Innovations Optical Backscatter Reflectometer (OBR) 4600, with silica optical fibers inscribed with type-II fiber Bragg gratings (FBGs). In conclusion, separate effects testing of type-II FBGs in silica optical fiber, to high temperature and to neutron fluences that are an order of magnitude larger than fluences that are anticipated for TREAT tests, demonstrate that type-II FBGs in silica optical fiber hold great promise for high-temperature reactor instrumentation in TREAT.