ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Young Do Koo, Ju Hyun Back, Man Gyun Na (Chosun Univ)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 440-447
If the undesired situations such as a transient or an accident improperly affecting normal operation occur in nuclear power plants (NPPs), accurately checking the NPP state by the operators using temporary trends of several instrumentation signals in a short time can be constrained. Therefore, this study was carried out to provide the transient identification information to the operators in a short time after the reactor trip according to the abnormal circumstance occurrence using the deep learning since the diagnosis of the NPP states is prior for effective accident management. To establish the deep learning model identifying the initial events of the NPPs, the simulated accident data were applied to train the deep learning model. These data were obtained by simulating the postulated scenarios using the modular accident analysis program (MAAP). The data from the MAAP code are used to calculate the time-integrated values of the simulated instrumentation signals. That is, the deep learning model is trained to find the optimized classifier to identify the events using the simulated signals of the accident data showing the behaviors of each accident circumstance. Utilized simulated signals were considered as some of the highly correlative accident monitoring variables. In this study, deep neural networks (DNNs) were used for identifying the transients of the NPPs. The identification performance of the DNN model, and moreover the support vector machine (SVM) model in the previous study is able to be checked in this paper. In addition, performance of the artificial intelligence methods as advanced technologies monitoring and diagnosing the NPP states can be assessed.