ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Miltiadis Alamaniotis (Univ of Texas at San Antonio), Asok Ray (Penn State)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 431-439
Monitoring of Boiling Water Rectors (BWRs) is a complex process that requires the use of a numerous sensors and systems. Acquisition of data and the subsequent processing of it accommodate inference making with regard to the state of the reactor system. System identification promotes decision making with regard to operation action taking. In this paper, we present a new method for serially integrating two machine learning tools and more specifically a neural network and a set of algorithms for learning Gaussian processes. Both sets of tools exhibit learning capabilities, and their integration in the current work offers a two-stage learning schema applied to identification of transient states in BWR. In particular, the proposed methodology utilizes the synergism of a set of Gaussian processes with a feedforward neural network for recognizing the type of loss of coolant accident (LOCA) that occurs in the reactor. The methodology is tested on a set of real-world datasets taken from the FIX-II facility. Results demonstrate efficacy of the method to accurately identify the occurring LOCA among three possible states.