ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Lee T. Maccarone, Daniel G. Cole (Univ of Pittsburgh), Nageswara S.V. Rao, Alexander M. Melin, Sacit M. Cetiner (ORNL)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 411-421
Cyber-physical systems consist of interconnected physical processes and computational re- sources. Because the cyber and physical worlds are integrated, vulnerabilities in both the cyber and physical domains can result in damage to the physical system. As cyber-physical systems, nuclear power plants must be secure in both domains in order to maintain operational safety. Nuclear power plants may be targeted by a variety of threat actors such as state actors, hack- tivists, and disgruntled employees|each with a unique motivation and set of resources. This work predicts the outcome of a cyber-physical attack on a nuclear power plant by examining the interaction between a threat actor and a plant defender. A game-theoretic approach is presented to analyze attacks on cyber-physical systems. The cyber-physical attack is analyzed as a two-player strategic-form game. The two players are an attacker and a defender: the defender attempts to maintain plant operation while the attacker attempts to disrupt it. The attacker's strategy set consists of a cyber attack, physical attack, cyber-physical attack, and abstaining from an attack. The defender's strategy set consists of a cyber reinforcement, physical reinforcement, cyber-physical reinforcement, and abstaining from reinforcement. Each player incurs a cost from either attacking or defending. If an attack is successful, the attacker incurs a gain and the defender incurs a loss. A mixed strategy Nash equilibrium is identi ed. Under the mixed Nash equilibrium conditions, the expected utility of the attacker is zero, and the expected utility of the defender is the cost of cyber-physical reinforcement.