ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Michael Pietrykowski, Carol Smidts (Ohio State)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 296-307
Hardware-in-the-loop test configurations require real-time execution speeds from their simulation components for best results. Slower-than-real-time simulations can degrade test result accuracy, completely invalidate a test, and potentially even damage the hardware component being tested; however, some simulations required for testing cannot be guaranteed to run in real time or faster-than-real-time. Thus, we developed a method to allow slower-than-real-time simulations to be used in HIL test setups. Input signals to the simulation are predicted using a simplified hardware model. The simulation uses these predicted values to run “ahead” of the hardware component in time. When a sufficient time margin is obtained, depending on the actual execution speed of the simulation, the hardware component is connected to the stored simulation results computed using the predicted inputs from the hardware model and the test commences. Simulation results are supplied to the hardware component in real time, for as long as the simulation time margin remains. A case study using a small modular reactor simulation code shows that using this method allows test lengths at least 350% longer and simulation error of 0.6% compared to 36%.