ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Richard Bisson, Jamie Coble (Univ of Tennessee, Knoxville)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 102-109
As more variable renewable energy enters the grid, peaking power is increasingly supplied by carbon-emitting natural gas plants. Significant greenhouse gas emissions can be avoided if these gas plants are replaced with carbon-neutral nuclear facilities to provide power to complement renewable generation and meet overall power demand. There is a significant body of work regarding reactor power shaping, especially with control rod movement in mechanical shim control strategies, for both currently operating nuclear power plants and future plant designs, but the literature on load following to meet rapidly varying power demand is less extensive. We have selected the Westinghouse IRIS IPWR as our demonstration for modeling, simulation, and control studies. The current plant model, developed with the aid of the TRANSFORM Library in Modelica, has a point reactor kinetics model, the steam generator system, and a simple balance of plant. The reactor core model has been augmented to include multiple axial nodes, the xenon reactivity contribution, and loss of excess reactivity during burnup to explore plant performance and control over a period of time of up to several hours and at different stages of the reactor life cycle. Preliminary results for load following operation in the IRIS Simulink model developed at the University of Tennessee suggest candidate actuators and strategies for control, especially in the balance of plant for fast transients. The control scheme for the load following operation of the IRIS IPWR model would ultimately lead to the development of real operational mechanisms and principles for SMRs in a grid with a large renewables share. Such principles include the consideration of figures of merit regarding the effect of maneuvers and actuation on plant economics. In the future the model will be augmented with a higher fidelity balance of plant model and integrated with a realistic grid demonstration to evaluate feasibility and performance.