ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Junyung Kim, Inseop Jeon, Sanghun Lee, Hyun Gook Kang (RPI)
Proceedings | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technolgies (NPIC&HMIT 2019) | Orlando, FL, February 9-14, 2019 | Pages 10-23
It has been a challenge in dynamic probabilistic risk assessment (PRA) world that a large number of scenarios from one initiating event with time-related scenario evolutions give complexness on an understanding of the transient/accident scenarios. The understanding of risk which enhances the safety of the entire system requires not only the full understandings of scenario evolutions but also the key characteristics of the events: Both success events and failed events. Since the time evolution is now in consideration of the plant risk assessment, a lot of difficulties such as organizing such large amounts of information and interpreting its physical meaning should be properly resolved. Clustering analysis, one of the unsupervised machine learning (ML) techniques, has been discussed in years to group scenarios with similar characteristics and to identify key patterns of each group so that an analyst can understand entire scenario behaviors by groups. Here we propose a novel methodology of identifying key patterns of scenarios in an accident case of a nuclear power plant system with dynamic reliability analysis. In clustering analysis four items need to be considered: 1Clustering algorithm, 2distance matrix, 3variables in clustering algorithm, and 4cluster validity evaluation. In this paper, partition around medoids (PAM) clustering algorithm with global alignment (GA) kernel distance is utilized. GA kernel, which is considered suitable for clustering time series data, is to assess the similarity between time series data by casting the dynamic time warping (DTW) distances and similarities as positive definite kernels. In order to find variables which will be embedded in the clustering algorithm, multilevel flow model (MFM) methodology is leveraged. For a case study, dynamic PRA tool, MOSAIQUE (Module for SAmpling Input and QUantifying Estimator) coupled with a RELAP-5 generates 2,500 scenarios of SBLOCA. Advanced power reactor 1400 MWe (APR- 1400) is used as a reference plant model. The proposed classification and identification approach has grouped the 8000 scenarios with only 77 clusters and the result can show key patterns shown in core damaged and safe cases which static PRA may not present.