ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Akihiro Uchibori, Tatashi Takata (JAEA), Hideki Yanagisawa (NESI Corp.), Jiazhi Li, Sunghyon Jang (The Univ of Tokyo)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1289-1294
When pressurized water or vapor leaks from a failed heat transfer tube in steam generators of sodium-cooled fast reactors, a high-velocity and high-temperature jet with sodium-water chemical reaction may cause tube failure propagation. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of this method was investigated through the numerical analysis of the experiment on water vapor discharging in liquid sodium. In this experiment, one tube for water vapor discharging and the 91 target tubes were placed in a liquid sodium pool. The numerical analysis showed that the temperature of the target tubes increased by the effect of the reacting jet. Some of them near the initial water leak point resulted in overheating rupture as with the experimental result. Although the proposed analysis method is very helpful for design and safety assessment, this method provides temperature distribution more widely than the real situation. To improve this conservativeness, a Lagrangian particle model for simulating reacting jet was also developed as an alternative method. The numerical results by the program unit of this model showed that the discharged gaseous particles repeated collision with the target tubes and moved along the inverse gravity direction.