ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Akihiro Uchibori, Tatashi Takata (JAEA), Hideki Yanagisawa (NESI Corp.), Jiazhi Li, Sunghyon Jang (The Univ of Tokyo)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1289-1294
When pressurized water or vapor leaks from a failed heat transfer tube in steam generators of sodium-cooled fast reactors, a high-velocity and high-temperature jet with sodium-water chemical reaction may cause tube failure propagation. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of this method was investigated through the numerical analysis of the experiment on water vapor discharging in liquid sodium. In this experiment, one tube for water vapor discharging and the 91 target tubes were placed in a liquid sodium pool. The numerical analysis showed that the temperature of the target tubes increased by the effect of the reacting jet. Some of them near the initial water leak point resulted in overheating rupture as with the experimental result. Although the proposed analysis method is very helpful for design and safety assessment, this method provides temperature distribution more widely than the real situation. To improve this conservativeness, a Lagrangian particle model for simulating reacting jet was also developed as an alternative method. The numerical results by the program unit of this model showed that the discharged gaseous particles repeated collision with the target tubes and moved along the inverse gravity direction.