ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Muhammad Altahhan, Sandesh Bhaskar, Paolo Balestra, Jason Hou, Maria Avramova (NCSU), Nicholas Smith (Southern Co.)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1248-1256
In this study, a hybrid two-dimensional (2D) / three-dimensional (3D) Liquid Fuel Molten Salt Reactor (LFMSR) core is modelled using the Multi-physics C++ code GeN-Foam (General Nuclear Foam). GeNFoam has three main sub-solvers - for neutron kinetics, thermal hydraulics, and thermal mechanics. A steady state analysis of a simplified 2D LFMSR model has been performed assuming rotational symmetry to cross validate the code with the commercial ANSYS Computational Fluid Dynamics (CFD) code Fluent. The calculations showed a very good agreement between the two codes allowing moving onto a 3D model simulation. A coupled 3D neutron kinetic and CFD steady state analysis of the 3D LFMSR core has been performed modeling one quarter of the core using the core symmetry to reduce the computational time. The GeN-Foam neutron kinetics sub-solver has been designed to consider also the drifting of the delayed neutrons precursors in LFMSR, a capability not yet implemented in the most of current neutron kinetics codes. The mixed Uranium and Plutonium chloride fuel has been selected in this preliminary study. The calculation results meet the expectations showing that GeN-Foam has all the features necessary for LFMSR design modeling and simulation. The delayed neutrons precursors behavior is as expected - the longer-lived isotopes accumulate near the outlet while the short-lived ones lay at the generation location. The calculated maximum temperature is close to the expected one and the velocity profile is consistent with a low viscosity, high density fluid velocity profile.