ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Kei Ito, Daisuke Ito, Yasushi Saito (Kyoto Univ), Toshiki Ezure, Masaaki Tanaka (JAEA)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1120-1132
A bathtub vortex is considered as one of significant phenomena which may cause gas entrainment (GE) in several industrial scenes, e.g. sodium-cooled fast reactors. In past studies, well-known Burgers vortex model is frequently used to simulate the bathtub vortex behavior. However, the Burgers model has a simple and unreal assumption that the axial velocity component is horizontally constant, while in real the bathtub vortex has the axial velocity distribution which shows large gradient in radial direction near the vortex center. In this study, a new theoretical vortex model with realistic axial velocity distribution is proposed. This model is derived from the axisymmetric Navier-Stokes equation as well as the Burgers model, but the axial velocity distribution in radial direction is considered. This function is defined to be zero at the vortex center and to approach asymptotically to zero at infinity. As the validation tests, the new model is applied to the evaluation of two simple vortex experiments and shows good agreements with the experimental data in terms of the free surface shape when the axial velocity distribution is modeled accurately. Therefore, it is confirmed that the accurate axial velocity modeling is crucially important to evaluate a bathtub vortex.