ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Kei Ito, Daisuke Ito, Yasushi Saito (Kyoto Univ), Toshiki Ezure, Masaaki Tanaka (JAEA)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1120-1132
A bathtub vortex is considered as one of significant phenomena which may cause gas entrainment (GE) in several industrial scenes, e.g. sodium-cooled fast reactors. In past studies, well-known Burgers vortex model is frequently used to simulate the bathtub vortex behavior. However, the Burgers model has a simple and unreal assumption that the axial velocity component is horizontally constant, while in real the bathtub vortex has the axial velocity distribution which shows large gradient in radial direction near the vortex center. In this study, a new theoretical vortex model with realistic axial velocity distribution is proposed. This model is derived from the axisymmetric Navier-Stokes equation as well as the Burgers model, but the axial velocity distribution in radial direction is considered. This function is defined to be zero at the vortex center and to approach asymptotically to zero at infinity. As the validation tests, the new model is applied to the evaluation of two simple vortex experiments and shows good agreements with the experimental data in terms of the free surface shape when the axial velocity distribution is modeled accurately. Therefore, it is confirmed that the accurate axial velocity modeling is crucially important to evaluate a bathtub vortex.