ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Muhammad Yousaf (Purdue Univ), Shoaib Usman (Missouri S&T)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1091-1099
A lattice Boltzmann method was utilized to investigate the natural convection heat transfer in the presence of sinusoidal roughness elements in a two-dimensional rectangular cavity heated at the bottom. Coupled momentum and energy equations were solved in a two-dimensional lattice using the single relaxation time Bhatnagar-Gross-Krook (BGK) model of lattice Boltzmann method. Computational model was validated against the previous benchmark solutions and a very good agreement was found to exist with smooth and rough cavities. Numerical studies were performed for a Newtonian fluid of the Prandtl number (Pr) 1.0 in a cavity of aspect ratio (L/H) 2.0. Sinusoidal roughness elements (n = 08) were placed on hot, cold, and both the hot and cold walls simultaneously. The dimensionless amplitude was varied from 0.015 to 0.15 in small steps. The number of the roughness elements was held constant to investigate the Rayleigh numbers (Ra) between 1x103 and 1x106. The computational results showed that a small roughness amplitude of approximately 0.025 has no significant effects on the average heat transfer. In contrast, the presence of sinusoidal roughness with an amplitude ? 0.05 causes the average heat transfer to degrade and delay in the onset of the natural circulation.