ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Muhammad Yousaf (Purdue Univ), Shoaib Usman (Missouri S&T)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1091-1099
A lattice Boltzmann method was utilized to investigate the natural convection heat transfer in the presence of sinusoidal roughness elements in a two-dimensional rectangular cavity heated at the bottom. Coupled momentum and energy equations were solved in a two-dimensional lattice using the single relaxation time Bhatnagar-Gross-Krook (BGK) model of lattice Boltzmann method. Computational model was validated against the previous benchmark solutions and a very good agreement was found to exist with smooth and rough cavities. Numerical studies were performed for a Newtonian fluid of the Prandtl number (Pr) 1.0 in a cavity of aspect ratio (L/H) 2.0. Sinusoidal roughness elements (n = 08) were placed on hot, cold, and both the hot and cold walls simultaneously. The dimensionless amplitude was varied from 0.015 to 0.15 in small steps. The number of the roughness elements was held constant to investigate the Rayleigh numbers (Ra) between 1x103 and 1x106. The computational results showed that a small roughness amplitude of approximately 0.025 has no significant effects on the average heat transfer. In contrast, the presence of sinusoidal roughness with an amplitude ? 0.05 causes the average heat transfer to degrade and delay in the onset of the natural circulation.