ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Muhammad Yousaf (Purdue Univ), Shoaib Usman (Missouri S&T)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1091-1099
A lattice Boltzmann method was utilized to investigate the natural convection heat transfer in the presence of sinusoidal roughness elements in a two-dimensional rectangular cavity heated at the bottom. Coupled momentum and energy equations were solved in a two-dimensional lattice using the single relaxation time Bhatnagar-Gross-Krook (BGK) model of lattice Boltzmann method. Computational model was validated against the previous benchmark solutions and a very good agreement was found to exist with smooth and rough cavities. Numerical studies were performed for a Newtonian fluid of the Prandtl number (Pr) 1.0 in a cavity of aspect ratio (L/H) 2.0. Sinusoidal roughness elements (n = 08) were placed on hot, cold, and both the hot and cold walls simultaneously. The dimensionless amplitude was varied from 0.015 to 0.15 in small steps. The number of the roughness elements was held constant to investigate the Rayleigh numbers (Ra) between 1x103 and 1x106. The computational results showed that a small roughness amplitude of approximately 0.025 has no significant effects on the average heat transfer. In contrast, the presence of sinusoidal roughness with an amplitude ? 0.05 causes the average heat transfer to degrade and delay in the onset of the natural circulation.