ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Yang Liu, Shanbin Shi, Yalan Qian, Xiaodong Sun (Univ of Michigan), Nam Dinh (NCSU)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1028-1040
Multiphase computational fluid dynamics (MCFD) is a promising tool to predict fully turbulent gas-liquid two-phase flows with high resolution. As a complex model, extensive validation and uncertainty quantification are required for an M-CFD solver before it can be trusted for large-scale industrial applications. In this paper, the inverse uncertainty quantification based on Bayesian inference is performed to quantify the uncertainty of the turbulence model in STAR-CCM+. As an inverse approach, the Bayesian approach requires experimental measurements to conduct the inference. In this work, high-resolution turbulence data measured by particle image velocimetry are used. The turbulence model with standard wall function and bubble-induced turbulence is considered. Supported by the PIV data, the uncertainties of the coefficients in the model are quantified, based on which the uncertainties of the solver predictions are evaluated. The Bayesian inference is conducted with the Markov Chain Monte Carlo (MCMC) method, based on a surrogate model constructed with Gaussian Process. It is found that the uncertainty of the turbulent kinetic energy is consistent with the measured data. However, it is also found that the liquid velocity is overestimated in the bulk flow region and underestimated in the near wall flow region compared to the measurement data. Such moderate discrepancies between the solver predictions and measurements require a more comprehensive evaluation that takes all relevant closure relations into consideration.