ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Yang Liu, Shanbin Shi, Yalan Qian, Xiaodong Sun (Univ of Michigan), Nam Dinh (NCSU)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1028-1040
Multiphase computational fluid dynamics (MCFD) is a promising tool to predict fully turbulent gas-liquid two-phase flows with high resolution. As a complex model, extensive validation and uncertainty quantification are required for an M-CFD solver before it can be trusted for large-scale industrial applications. In this paper, the inverse uncertainty quantification based on Bayesian inference is performed to quantify the uncertainty of the turbulence model in STAR-CCM+. As an inverse approach, the Bayesian approach requires experimental measurements to conduct the inference. In this work, high-resolution turbulence data measured by particle image velocimetry are used. The turbulence model with standard wall function and bubble-induced turbulence is considered. Supported by the PIV data, the uncertainties of the coefficients in the model are quantified, based on which the uncertainties of the solver predictions are evaluated. The Bayesian inference is conducted with the Markov Chain Monte Carlo (MCMC) method, based on a surrogate model constructed with Gaussian Process. It is found that the uncertainty of the turbulent kinetic energy is consistent with the measured data. However, it is also found that the liquid velocity is overestimated in the bulk flow region and underestimated in the near wall flow region compared to the measurement data. Such moderate discrepancies between the solver predictions and measurements require a more comprehensive evaluation that takes all relevant closure relations into consideration.