ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jacob P. Gorton, Nicolas R. Brown (Penn State), Soon Kyu Lee, Yonho Lee (Univ of New Mexico)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1022-1027
We present the results of a preliminary comparison of low-pressure transient critical heat flux (CHF) tests conducted in a closed tube test section and best-estimate simulation results. We compare low-pressure experimental CHF test results for stainless steel 316 (SS316) and Inconel 600 test sections to results predicted by models developed in two widely-used thermal hydraulics codes; the system code RELAP5-3D and the Consortium for Advanced Simulation of LWRs (CASL) version of CTF. The objective of the comparison was to determine how well the models would predict CHF and post-CHF tube temperatures and rewetting behavior. The RELAP5-3D and CTF models conservatively predicted the heat flux at which CHF was exceeded for the SS316 models, but both codes showed that CHF was exceeded at a greater heat flux than in the experiment for the Inconel 600 case. RELAP5-3D and CTF overpredicted the post-CHF tube temperature in the SS316 model but underpredicted the Inconel tube temperature, thus demonstrating the need for improved CHF and post-CHF prediction methods for various materials.