ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
Jacob P. Gorton, Nicolas R. Brown (Penn State), Soon Kyu Lee, Yonho Lee (Univ of New Mexico)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1022-1027
We present the results of a preliminary comparison of low-pressure transient critical heat flux (CHF) tests conducted in a closed tube test section and best-estimate simulation results. We compare low-pressure experimental CHF test results for stainless steel 316 (SS316) and Inconel 600 test sections to results predicted by models developed in two widely-used thermal hydraulics codes; the system code RELAP5-3D and the Consortium for Advanced Simulation of LWRs (CASL) version of CTF. The objective of the comparison was to determine how well the models would predict CHF and post-CHF tube temperatures and rewetting behavior. The RELAP5-3D and CTF models conservatively predicted the heat flux at which CHF was exceeded for the SS316 models, but both codes showed that CHF was exceeded at a greater heat flux than in the experiment for the Inconel 600 case. RELAP5-3D and CTF overpredicted the post-CHF tube temperature in the SS316 model but underpredicted the Inconel tube temperature, thus demonstrating the need for improved CHF and post-CHF prediction methods for various materials.