ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Jacob P. Gorton, Nicolas R. Brown (Penn State), Soon Kyu Lee, Yonho Lee (Univ of New Mexico)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1022-1027
We present the results of a preliminary comparison of low-pressure transient critical heat flux (CHF) tests conducted in a closed tube test section and best-estimate simulation results. We compare low-pressure experimental CHF test results for stainless steel 316 (SS316) and Inconel 600 test sections to results predicted by models developed in two widely-used thermal hydraulics codes; the system code RELAP5-3D and the Consortium for Advanced Simulation of LWRs (CASL) version of CTF. The objective of the comparison was to determine how well the models would predict CHF and post-CHF tube temperatures and rewetting behavior. The RELAP5-3D and CTF models conservatively predicted the heat flux at which CHF was exceeded for the SS316 models, but both codes showed that CHF was exceeded at a greater heat flux than in the experiment for the Inconel 600 case. RELAP5-3D and CTF overpredicted the post-CHF tube temperature in the SS316 model but underpredicted the Inconel tube temperature, thus demonstrating the need for improved CHF and post-CHF prediction methods for various materials.