ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Jacob P. Gorton, Nicolas R. Brown (Penn State), Soon Kyu Lee, Yonho Lee (Univ of New Mexico)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1022-1027
We present the results of a preliminary comparison of low-pressure transient critical heat flux (CHF) tests conducted in a closed tube test section and best-estimate simulation results. We compare low-pressure experimental CHF test results for stainless steel 316 (SS316) and Inconel 600 test sections to results predicted by models developed in two widely-used thermal hydraulics codes; the system code RELAP5-3D and the Consortium for Advanced Simulation of LWRs (CASL) version of CTF. The objective of the comparison was to determine how well the models would predict CHF and post-CHF tube temperatures and rewetting behavior. The RELAP5-3D and CTF models conservatively predicted the heat flux at which CHF was exceeded for the SS316 models, but both codes showed that CHF was exceeded at a greater heat flux than in the experiment for the Inconel 600 case. RELAP5-3D and CTF overpredicted the post-CHF tube temperature in the SS316 model but underpredicted the Inconel tube temperature, thus demonstrating the need for improved CHF and post-CHF prediction methods for various materials.