ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Aaron M. Krueger (Texas A&M), Vincent A. Mousseau (SNL), Yassin A. Hassan (Texas A&M)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 1003-1014
Applying solution verification methods to computational fluid dynamic (CFD) simulations has substantially increased within the past three decades, especially with the introduction of the grid convergence index (GCI) metric. Since then, numerical and meshing schemes and the governing equations have increased in complexity, which makes understanding the discretization error for a simulation even more complex. Greater understanding of how discretization error develops from local truncation error (LTE) within a simulation can provide additional evidence to determine the adequacy of the error model used in current solution verification methods. It also provides meshing strategies to improve the adequacy of the error model. When the error model is determined to be adequate, additional confidence is added to the solution verification studies. One way of understanding how discretization error develops from LTE is to quantify the LTE and track how it propagates through time and space using the partial differential equation. Propagating LTE through time and space was completed using two methods: difference of difference quotients (DDQ) method and method of manufactured solutions-informed modified equation analysis (MMS-informed MEA) method. These methods justify the adequacy of the error model implemented in most Richardson extrapolation (RE) methods for the implemented numerical and meshing scheme. In addition, an example problem is provided that showed the implementation of both discretization error estimation methods using a first-order method and a uniform, structured mesh. The discretization error estimation results were then compared to the exact discretization error.