ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Byeonggeon Bae, Taeho Kim, Byongjo Yun (Pusan National Univ)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 949-952
Distributions of local droplet parameters such as the droplet fraction, droplet velocity, and droplet diameter were measured using a single optical fiber probe (S-OFP) sensor in a horizontal pipe with an inner diameter of 40 mm and a length of 5 m. Flow condition covers the liquid superficial velocity ranging from 0.01 m/s to 0.015 m/s, and the gas superficial velocity ranging from 27.5 m/s to 32 m/s. Asymmetric distributions of local droplet parameters were observed in the direction of the vertical center line of the test section due to the effect of gravity. The one-dimensional droplet mass flow rate was calculated from distributions of the local droplet fraction and droplet velocity. In this study, the expected maximum height of interfacial wave was considered as a boundary between the droplet and the continuous liquid. In order to validate the droplet mass flow rate measured by the S-OFP sensor, liquid film extraction method was also applied simultaneously in the measuring plane of a test section. It was found that the two methods showed similar results for the droplet mass flow rate under the low liquid flow condition. Whereas, the difference of the droplet mass flow rate between the two methods was large in the high liquid superficial velocity condition. It was resulted by the fact that the liquid film was not completely removed at the liquid film extraction section.