ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Byeonggeon Bae, Taeho Kim, Byongjo Yun (Pusan National Univ)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 949-952
Distributions of local droplet parameters such as the droplet fraction, droplet velocity, and droplet diameter were measured using a single optical fiber probe (S-OFP) sensor in a horizontal pipe with an inner diameter of 40 mm and a length of 5 m. Flow condition covers the liquid superficial velocity ranging from 0.01 m/s to 0.015 m/s, and the gas superficial velocity ranging from 27.5 m/s to 32 m/s. Asymmetric distributions of local droplet parameters were observed in the direction of the vertical center line of the test section due to the effect of gravity. The one-dimensional droplet mass flow rate was calculated from distributions of the local droplet fraction and droplet velocity. In this study, the expected maximum height of interfacial wave was considered as a boundary between the droplet and the continuous liquid. In order to validate the droplet mass flow rate measured by the S-OFP sensor, liquid film extraction method was also applied simultaneously in the measuring plane of a test section. It was found that the two methods showed similar results for the droplet mass flow rate under the low liquid flow condition. Whereas, the difference of the droplet mass flow rate between the two methods was large in the high liquid superficial velocity condition. It was resulted by the fact that the liquid film was not completely removed at the liquid film extraction section.