ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Wadim Jaeger, Wolfgang Hering (KIT)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 846-859
In this paper, a review of experiments related to liquid metal heat transfer under mixed convection is performed. This study is relevant because heat transfer during start-up and shut-down procedures, and operational transients is influenced by natural convection, resulting in mixed convection, which differs considerably from forced convection. Up to now, simulation tools like TRACE, RELAP, etc. apply only forced convection models for liquid metal heat transfer. The influence of mixed convection on the heat transfer during the above mentioned transients is completely ignored. Hence, it is not possible to simulate mixed convection with best-estimate system codes like TRACE or RELAP. In order to perform realistic simulations of plants and experimental facilities mixed convection must be addressed and considered. Therefore, the literature is reviewed for experimental data with liquid metal heat transfer under mixed convection and generally applicable statements and models will be provided. A clear distinction in the heat transfer behavior for low and high Péclet number flows can be identified. Thereby, a Péclet number dependency is visible for higher Péclet numbers (Pe > 100). Furthermore, the heat transfer (Nusselt number) cannot be presented as a function of one dimensionless parameter. To identify underlying phenomena, especially when comparing different experimental scenarios several dimensionless numbers are needed (Gr*, B, Z, etc.). Based on this study, it is possible to derive a model for the heat transfer under mixed convection. Nevertheless, these findings and the sparse number of experiments also indicate the need for new and comprehensive experiments.