ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Wadim Jaeger, Wolfgang Hering (KIT)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 846-859
In this paper, a review of experiments related to liquid metal heat transfer under mixed convection is performed. This study is relevant because heat transfer during start-up and shut-down procedures, and operational transients is influenced by natural convection, resulting in mixed convection, which differs considerably from forced convection. Up to now, simulation tools like TRACE, RELAP, etc. apply only forced convection models for liquid metal heat transfer. The influence of mixed convection on the heat transfer during the above mentioned transients is completely ignored. Hence, it is not possible to simulate mixed convection with best-estimate system codes like TRACE or RELAP. In order to perform realistic simulations of plants and experimental facilities mixed convection must be addressed and considered. Therefore, the literature is reviewed for experimental data with liquid metal heat transfer under mixed convection and generally applicable statements and models will be provided. A clear distinction in the heat transfer behavior for low and high Péclet number flows can be identified. Thereby, a Péclet number dependency is visible for higher Péclet numbers (Pe > 100). Furthermore, the heat transfer (Nusselt number) cannot be presented as a function of one dimensionless parameter. To identify underlying phenomena, especially when comparing different experimental scenarios several dimensionless numbers are needed (Gr*, B, Z, etc.). Based on this study, it is possible to derive a model for the heat transfer under mixed convection. Nevertheless, these findings and the sparse number of experiments also indicate the need for new and comprehensive experiments.