ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. M. Tentner, A. Karahan (ANL), S. H. Kang (KAERI)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 823-835
The SAS4A safety analysis code, originally developed for the analysis of postulated Severe Accidents in Oxide Fuel Sodium Fast Reactors (SFR), has been significantly extended to allow the mechanistic analysis of severe accidents in Metallic Fuel SFRs. The SAS4A metal fuel models simulate the metal fuel thermo-mechanical and chemical behavior and track the evolution and relocation of multiple fuel and cladding components during the pre-transient irradiation and during the postulated accident, allowing an accurate description of the changes in the local fuel composition. The local fuel composition determines the fuel thermo-physical properties, such as freezing and melting temperatures, which in turn affect the fuel relocation behavior and ultimately the core reactivity and power history during the postulated accidents. Models describing the fuel-cladding interaction and eutectic formation, the effects of the in-pin sodium on the in-pin fuel relocation, and the post-failure reentry of the molten fuel and fission gas from the pin plenum have also been added. The paper provides on overview of the SAS4A key metal fuel models emphasizing the post-failure metal fuel relocation models included in the LEVITATE-M module of SAS4A. The capabilities of the SAS4A metal fuel models are illustrated through an extended SAS4A analysis of a postulated unprotected LOF-TOP accident in the metal fuel Prototype Gen-IV Sodium Fast Reactor (PGSFR). The results show that the maximum relative power reached during the postulated accident is 1.19 P0. The favorable characteristics of the metal fuel cause a significant decrease in net reactivity and relative power due to pre-failure in-pin fuel relocation. Negative net reactivity values persist after cladding failure, and the post-failure fuel relocation events occur at low and decreasing power levels.