ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
G. D. Latimer, W. R. Marcum (Oregon State Univ), W. F. Jones (INL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 777-788
In this study, two pool blowdown experiments were conducted on simulated PWR fuel rods filled with spherical lead pellets as a surrogate fuel having similar density to UO2. These experiments were performed at conditions similar to those expected during the second heatup phase of a loss-of-coolant accident in a conventional light water reactor. The rods were pressurized with a small volume of nitrogen gas at 4.0 MPa to rapidly expel the surrogate fuel particles through a pre-fabricated rupture in the rod. Subsequent dispersion of the particles was captured with a high-speed camera at an acquisition rate of 800 frames per second in order to properly record the transient at a resolved time scale. Initial images revealed contrasting mechanical behavior in the case of a single rod when compared to that in a representative 5x5 section of a fuel bundle. Pressure history on each experiment showed that there is not a significant difference in the depressurization rates of rods with or without the surrogate fuel. Selected particles were tracked in each experiment and overlaid to visualize the differences in the effective range. For the case of the bundle, most of the particles are deposited in the adjacent subchannels, while for the single rod, the mean free path is much longer. Calculated particle displacement and velocity trajectories are compared against theoretical models based on a force balance of a single particle, and show good agreement, with possible errors arising in the transient nature of the drag coefficient, and uncertainties in particle mass.