ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Robert C. Bowden, Casey Tompkins, Sun-Kyu Yang (CNL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 751-764
In this experimental investigation, mean liquid velocity fields were investigated for turbulent flow within a horizontal 7-rod bundle geometry using Particle Image Velocimetry (PIV). PIV measurements were conducted at two axial locations, near the bundle inlet and also near the mid-plane, and at four Reynolds numbers ranging from approximately 8400 to 21000 based on a hydraulic diameter of 7.636 mm. The axial velocity fields in three different gap regions of the 7-rod bundle were reported, including rod-rod gaps and rod-channel gaps. Statistical techniques were used to describe the velocity fields, including mean and turbulent velocity components. The instantaneous and ensemble-averaged velocities in the gap regions are shown to be aligned in the axial (horizontal) flow direction, with a negligible mean vertical components. It was found that the maximum velocity profile was between 20 to 25% higher than the average velocity, while measured axial turbulent velocity typically ranged between 10 to 20% of the corresponding mean velocity. Profiles of local mean and turbulent velocity components in the gap regions were found to be self-similar when normalized using the maximum velocity, and local velocity, respectively.