ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
Joseph Litrel, Donna Post. Guillen (INL), Michael McKellar (Univ of Idaho)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 714-728
Microreactors can be used to provide electrical power up to 10 MWe for emergency situations, remote areas, or military applications. Combined cycles comprised of an air Brayton topping cycle and an Organic Rankine bottoming cycle were evaluated in HYSYS using different working fluids in the bottoming cycle and in different ambient environments. The results indicate that a bottoming ORC can increase the thermal efficiency of the air Brayton cycle from 35.8 % up to 40.2 %. Exergy analysis was also performed on the combined cycle along with a simple validation of HYSYS on the bottoming cycle. The exergy analysis shows that of available work, most is lost at the reactor or turned into work at the topping cycle. A rudimentary capital cost estimate shows that the addition of a bottoming cycle is not prohibitively expensive.