ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Kyle E. Brumback, Seth R. Cadell, Brian G. Woods (Oregon State Univ)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 701-713
An investigation into the onset of natural circulation during a depressurized conduction cooldown was conducted at the High Temperature Test Facility at Oregon State University. In this set of four tests, the primary loop of the facility was filled with helium and then heated until a temperature difference across the core was: 125°C, 250°C, 375°C, and 500°C. The Reactor Cavity Simulation Tank (RCST) was filled with nitrogen gas. During the heating phase of the test the primary loop and RCST were held at pressures greater than 130 kPa. Once the desired temperature was achieved the primary loop and RCST pressures were reduced to 112 and 110 kPa, respectively. The cold leg break valve was opened and then the hot leg break valve was opened. The hot helium in the primary loop began to flow into the RCST displacing the cold nitrogen, in a lock exchange flow. Once the density differences equalized in the two tanks, a natural circulation will develop as the gas is heated in the core, flows from into the RCST through the upper plenum, upcomer, and cold leg. Once cooled in the RCST the gas then flows through the hot leg and returns into the core. This paper discusses the findings for each of the four tests and compares the time required for the natural circulation to establish as a function of temperature across the core.