ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kyle E. Brumback, Seth R. Cadell, Brian G. Woods (Oregon State Univ)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 701-713
An investigation into the onset of natural circulation during a depressurized conduction cooldown was conducted at the High Temperature Test Facility at Oregon State University. In this set of four tests, the primary loop of the facility was filled with helium and then heated until a temperature difference across the core was: 125°C, 250°C, 375°C, and 500°C. The Reactor Cavity Simulation Tank (RCST) was filled with nitrogen gas. During the heating phase of the test the primary loop and RCST were held at pressures greater than 130 kPa. Once the desired temperature was achieved the primary loop and RCST pressures were reduced to 112 and 110 kPa, respectively. The cold leg break valve was opened and then the hot leg break valve was opened. The hot helium in the primary loop began to flow into the RCST displacing the cold nitrogen, in a lock exchange flow. Once the density differences equalized in the two tanks, a natural circulation will develop as the gas is heated in the core, flows from into the RCST through the upper plenum, upcomer, and cold leg. Once cooled in the RCST the gas then flows through the hot leg and returns into the core. This paper discusses the findings for each of the four tests and compares the time required for the natural circulation to establish as a function of temperature across the core.