ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Apoorva Rudra, Masahiro Kawaji (City College of New York), Aleksandr V. Obabko Saumil Patel (ANL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 694-700
Very High Temperature Reactors (VHTRs) have passive safety systems in comparison to the traditional current generation nuclear reactors that have active safety systems. In addition, they have gaseous coolants like helium proposed for them that allow them to operate at a temperature over 1000 oC along with other applications. However, several substantial engineering challenges are expected in VHTRs and can lead to localized hot spots in the reactor core as a result of degraded heat transfer in coolant channels. Our work addresses one such scenario called flow relaminarization. The following work incorporates 3D simulations in a very long pipe wherein turbulence is sustained throughout for the largest aspect ratio (L/D ratio) known in literature (~235). This work is the first step of a two-step process towards the final objective of studying heat driven turbulent gas relaminarization. Simulations are performed using a high order, spectral element and massively parallel CFD code called NEK5000 that combines the geometric flexibility of finite elements with the high accuracy of spectral methods. A replication method along with recycled periodicity is incorporated to successfully sustain turbulence throughout the pipe. The maximum Reynolds number incorporated for these simulations is 5190 which is chosen keeping in mind the flow relaminarization (forced convection) experiments that were performed by the group in the past. A sensitivity study on the polynomial order was performed as well and based on that the polynomial order chosen for the simulations was 6.