ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Salman M. Alshehri (Missouri S&T/KACST), Ibrahim A. Said (Alexandria Univ/Rice Univ), Muthanna H. Al-Dahhan (Missouri S&T/KACST/Alexandria Univ/Rice Univ), Shoaib Usman (Missouri S&T)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 670-681
Multiphase Reactors Engineering and Applications Laboratory (mReal) at Missouri S&T has designed, developed, and tested a dual channel module. The facility represents a scaled down prismatic modular reactor to mimic pressurized conduction cooldown (PCC) accident scenario for the prismatic modular reactor with a reference to High-Temperature Test Facility at Oregon State University (OSU-HTTF). The current facility was constructed to investigate a plenum-to-plenum (P2P) natural circulation heat transfer through two channels for different coolants (working fluid) at high operating pressure of 413.7 kPa. The natural circulation heat transfer in terms of temperature fields and heat transfer coefficients across the core of current facility (i.e., channels) has been investigated at constant outer surface temperature of upper plenum and downcomer channel (278.15 K) under nonuniform heating center peaking step (approximating cosine shape) using an advanced fast response heat transfer technique. Results showed that a net inner surface temperature gain along the riser channel by 84, 95, 98 and 150K for carbon dioxide, nitrogen, argon, and helium respectively. Also, an average increasing of centerline temperature along the riser channel is observed by 110, 133, 151 and 204 K for carbon dioxide, nitrogen, argon and helium, respectively. Furthermore, the current results show a common heat transfer coefficients trend for all coolants along the riser channel; the local heat transfer coefficient decrease with axial location from the entrance (Z/L = 0.044) until a minimum value at Z/L = 0.279 and after this position, the local heat transfer coefficient starts to increase again till Z/L= 0.591 (laminarization effects). And finally, heat transfer coefficient decrease from Z/L= 0.591 till the exit into the upper plenum. However, it was observed that heat transfer coefficients for helium was higher than all other gases for the entire riser channel and remained positive for much higher heights. In the laminarization effects region (0.279