ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Gary L. Solbrekken, Gerhard H. Schnieders, Jerome Rivers (Univ of Missouri, Columbia), Adrian Tentner, Cezary Bojanowski, Erik Wilson (ANL)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 612-624
A series of experimental and numeric studies are being carried out to support the safety assessment of a new potential low-enriched uranium fuel for high power research and test reactors. A set of experiments designed to provide a database of high-fidelity data was obtained on a curved test plate at the University of Missouri flow loop over velocity sweep ranging from a nominal 2 m/s to a nominal 4.3 m/s. The data suggested that there was a hysteresis over the course of the velocity sweeps that could not be explained by pure mechanical arguments. Temperature measurements of the water flowing through the test section indicated that the circulating pump increased the reservoir temperature by about 7 oC over the course of the 120 minute experiment. Numeric simulations of the thermal expansion suggested that plate deflections on the order of 0.025 mm (1 mil), similar to those seen during the flow experiments, were possible at the leading edge of the test plate. Therefore, it is necessary to correct experimental data for thermal expansion if the temperature of water flowing through the test section does increase.