ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Divya Jyoti Prakash, Youho Lee (Univ of New Mexico)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 600-611
Poor resistance to thermal shock is one of the major limiting factors for ceramic materials to be used as nuclear structural materials. Most past efforts to improve thermal shock tolerance focused on increasing material strength, thermal conductivity. As much as the material aspect of thermal shock tolerance is concerned, convective heat transfer is the other critical component for thermal shock tolerance, as it determines non-uniform temperature fields leading to thermal stresses. Our approach is to achieve thermal shock tolerance by reducing surface heat flux with surface modification. We perform a systematic study of the thermal shock experienced by the alumina during quenching by cold water droplet impingement with heated surface temperature ranging from 125°C to 475°C for Weber number ?32. Degree of thermal shock is gauged from the residual strength of material post quenching. We find clear sign of thermal shock fracture for as received hydrophilic alumina due to higher heat flux during nucleate and transition boiling mode of heat transfer. Residual strength is nearly constant for surface modified alumina due to the hydrophobic nano-fractal surface that promoted film boiling mode of heat transfer, implying significant improvement in thermal shock tolerance with reduced heat flux. This is a novel approach to reduce thermal shock by controlling the heat transfer with surface modification, different from conventional, yet expensive, method of improving the bulk material properties. The presented method of improving thermal shock tolerance can be applied to various nuclear power plant components, including turbine blades.