ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Divya Jyoti Prakash, Youho Lee (Univ of New Mexico)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 600-611
Poor resistance to thermal shock is one of the major limiting factors for ceramic materials to be used as nuclear structural materials. Most past efforts to improve thermal shock tolerance focused on increasing material strength, thermal conductivity. As much as the material aspect of thermal shock tolerance is concerned, convective heat transfer is the other critical component for thermal shock tolerance, as it determines non-uniform temperature fields leading to thermal stresses. Our approach is to achieve thermal shock tolerance by reducing surface heat flux with surface modification. We perform a systematic study of the thermal shock experienced by the alumina during quenching by cold water droplet impingement with heated surface temperature ranging from 125°C to 475°C for Weber number ?32. Degree of thermal shock is gauged from the residual strength of material post quenching. We find clear sign of thermal shock fracture for as received hydrophilic alumina due to higher heat flux during nucleate and transition boiling mode of heat transfer. Residual strength is nearly constant for surface modified alumina due to the hydrophobic nano-fractal surface that promoted film boiling mode of heat transfer, implying significant improvement in thermal shock tolerance with reduced heat flux. This is a novel approach to reduce thermal shock by controlling the heat transfer with surface modification, different from conventional, yet expensive, method of improving the bulk material properties. The presented method of improving thermal shock tolerance can be applied to various nuclear power plant components, including turbine blades.