ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Trevor Howard, Wade Marcum (Oregon State Univ)
Proceedings | Advances in Thermal Hydraulics 2018 | Orlando, FL, November 11-15, 2018 | Pages 586-599
Vortex shedding is a phenomenon relevant to any industry dealing with fluid flow. Vortices shed off solid structures often produce oscillatory forces, which have been suspect in the catastrophic failure of airplanes and bridges alike. To prevent further engineering failures a better understanding of the underlying physics is needed. It has been well established that tandem plates exhibit different flow phenomena than cylinders, yet the study of the flow field around tandem plates is insufficient in providing a reasonable prediction of the Strouhal numbers for given geometry. This study fills the void in providing a review of the relevant literature related to vortex shedding for plates and develops the theory behind vortex shedding for plates through leveraging previous studies and applying a scaling analysis.